EMF, Series & Parallel Circuits

David Sarnoff's associates (NBC) in response to his urgings for investment in the radio in "The wireless music box has no imaginable commercial value. Who would pay for a message sent to nobody in particular?" the 1920s.

EME

- circuit through the use of a source of *emf* (battery or generator).

 The *emf*, ϵ , describes the work done per unit charge. A constant current can be maintained in a closed
- The terminal voltage is the potential difference the emf if the battery had no internal resistance across the terminals of a battery. This would equal
- Write down ΔV for a battery.

E is the open-circuit voltage, which is the terminal voltage when the current is zero.

EMF

Graph V for a circuit with a battery connected to an

external resistor.

The load resistance is the resistance of the external resistor.

Most often the internal resistance is << than the external resistance.

Series & Parallel w

- Resistors in series have the same curet
- The equivalent resistance is given by $R_{eq} = \sum R$; DV=IR,+IR2+···

Resistors in parallel have the same $6v = \frac{4u}{3}$ $3v = \frac{4u}{3}$ $3v = \frac{4u}{3}$

The equivalent resistance is given by $R_{eq} = \frac{1}{16} R_{eq}$